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Controlling spatiotemporal chaos in coupled nonlinear oscillators
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A method for controlling spatiotemporal chaos in coupled ordinary differential equations is presented. It is
based on two ideas: stabilization of unstable periodic patterns embedded in spatiotemporal chaos, and pertur-
bation of dynamical variables only at regular time intervals.@S1063-651X~97!13306-2#
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Many nonlinear systems such as current-biased serie
rays of Josephson junctions@1#, dynamic arrays of nonlinea
electrical circuits@2#, discrete reaction-diffusion equation
@3#, and networks of neurons and cardiac pacemaker c
@4#, to mention only a few, are modeled by an array of d
fusively coupled oscillators or, in other words, coupled or
nary differential equations~CODE’s!. The most typical type
of behavior encountered in large interconnections of cha
oscillators is spatiotemporal chaos, where the observed
namics exhibits chaotic properties both in time and spa
However, in many applications, it is advantageous to av
chaos. In this paper we propose a method for controll
spatiotemporal chaotic dynamics in CODE’s.

Since the seminal paper by Ott, Grebogi, and Yo
~OGY! @5#, there has been wide activity in the area of cha
control across many disciplines@6#. Control of spatiotempo-
ral chaos in coupled map lattices~CML’s! and systems de
scribed with partial differential equations~PDE’s! has been
considered recently@7–11#. In Refs.@7,8# it was shown that
the complex spatiotemporal behavior in CML’s can be elim
nated in favor of a coherent state in which all elements
synchronized to a prescribed periodic orbit using the O
method@5# and a linear feedback approach@12,13#. By in-
jecting negative feedback at a certainx-space point, Hu and
He @9# successfully stabilized unstable steady states and
trolled chaos in a one-dimensional nonlinear drift-wa
equation driven by a sinusoidal wave. In@10#, control of a
class of spatialy extended systems was achieved via the
bilization of an active source of traveling waves. Lu, Yu, a
Harrison@11# successfully demonstrated control of unsta
roll patterns in a transversely extended three-level laser,
ing a time- and space-dependent feedback approach.

Recently @14#, the taming of spatiotemporal chaos
CODE’s was achieved by random variations of a single
rameter along the array. However, as stressed by Stro
@15#, no one knows what complex periodic pattern will ari
after disorder is introduced. The approach we propose in
Brief Report is based on two ideas:~i! stabilization of un-
stable periodic patterns embedded in spatiotemporal ch
and ~ii ! perturbation of dynamical variables~not the system
parameters! only at regular time intervals. To control chao
by stabilizing periodic orbits is a crucial idea of the OG
method, and it has been successfully applied in various
systems@16#. On the other hand, systems which are driv
only at discrete time intervals in such a way that some co
561063-651X/97/56~1!/1238~4!/$10.00
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ponents of the state vector are reset to new values were
investigated recently. For example, systems driven by no
were considered in Ref.@17# with important consequences i
Monte Carlo applications. Recently, this type of driven sy
tem was applied successfully to synchronize chaos@18,19#
and spatiotemporal chaos@20#.

Generally speaking, control always means to influence
system in such a way that it performs in a desired way. O
control strategy is based on the application of controll
dispersed periodically in space with periodP. Each of them
perturbs the value of a single-state variable of the oscilla
or ODE where it is connected with. For simplicity we a
sume that the perturbations areT periodic in time. The mo-
tivation for such a control is twofold:~i! to reduce the num-
ber of controlling points, and~ii ! to make possible the
control throughtime-discontinuousmonitoring and influenc-
ing of the controlled state variables. Therefore, we consid
class of systems where only control of state variables is p
sible, and not control of system parameters. The type of c
trol we used in this paper can be implemented experim
tally as described in Ref.@21#.

Let us consider a one-dimensional array ofN diffusively
coupled oscillators with periodic boundary conditions

u̇ i5f ~u i !1D~u i1122u i1u i21!1Gv~ t !, ~1!

where u i , i51, . . . ,N, are n-dimensional vectors,
D5diag(d1 ,d2 , . . . ,dn), andG5diag(g1 ,g2 , . . . ,gn) are
constant diagonal matrices, andv(t) is ann-dimensional in-
put signal representing the influence of the controllers to
CODE’s. In the following we assume that only one eleme
of the matrixG is equal to 1, and all others are zero. In oth
words, only one variable, say they variable, of the state
vector of each oscillator can be monitored and/or controll
Let s(t) be a solution for a single oscillator~clearly it is also
a solution of the coupled oscillators without driving! that
should be stabilized~the control goal!. The input signal
v(t) has the following form:

v~ t !5gT~s~ t !,u i !D i ,P , ~2!

wheregT is a function describing the control law~see be-
low!, andT is a parameter playing the role of a period. T
last term in Eq.~2! is a modification of the Kronecker sym
bol and denotes
1238 © 1997 The American Physical Society
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D i ,P5H 1 for imodP50

0 for imodPÞ0.

The controllers are located periodically in space with per
P ~since we consider periodic boundary conditions, we a
assume thatN/P is an integer!. The functiongT can be de-
scribed as follows@22#: the CODE ~1! oscillates unforced
and free from the controlling signals(t), except for the equi-
distant timesnT, when they variables of theN/P oscillators
are simultaneously forced to new values, that is,

yi~nT!5sy~nT!, i5P,2P, . . . ,N

wheresy(t) is the y projection of the control goals(t) at
timesnT. Thus we say that the CODE~1! is controlled by
the sequence$sy(nT)%. Our control strategy relies on th
following.

Theorem: Consider the dynamical system

u̇5f~u!, ~3!

and its solutions(t). Decompose the state vector of this sy
tem into two partsw andv, and the vector fieldf into fw and
fv, respectively. Assume that the system

v̇5fv„sw~ t !,v…

is asymptotically stable when continuously driven bysw(t).
Then system~3! can be controlled with the sequence of im
pulses$sw(nT)%; that is, the solution of Eq.~3! approaches
the goals(t) as time goes to infinity, provided that the sam
pling periodT is sufficiently small@23,24#.

We stress here that the errore(t)5iu(t)2s(t)i ap-
proaches zeroonly if s(t) is anexact solutionof Eq. ~3!. If,
for example, the control goal is an unstable periodic or
which is only approximately known, thene(t) is only close
to zero and never reaches it.

Therefore, the better one knows the unstable periodic
bits, the closer the errore(t) goes to zero. We emphasiz
that this effect is not caused by the sampling of the unsta
periodic orbit, and it is a common phenomenon in all simi
control methods. An example is the linear control feedba
methodu̇5f(u)1k@s(t)2u# , wheres(t) is an unstable pe
riodic orbit.

In CODE’s in general, the following types~phases! of
behavior are possible@25#: ~i! Coherent (synchronized
phase: all oscillators synchronize.~ii ! Ordered phase: groups
of oscillators are clustered, and in each group a cohe
phase appears.~iii ! Turbulent phase: each oscillator operate
in a chaotic regime, and all oscillators are completely des
chronized.

Now we show how the turbulent phase in CODE’s can
eliminated in favor of coherent and/or ordered phases.
the numerical simulations presented in this paper, we use
Lorenz system, but similar results have been obtained w
other dynamical systems. In the following, the values of
parameters in the Lorenz system are fixed tos510, r523,
andb51. We also consider onlyy-drive throughout the pa
per, that is,g150, g251, andg350.

In the first simulation, the control goal is a chaotic orbit
a single Lorenz oscillator. As a result of the control, t
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turbulent phase is replaced by the coherent chaotic phase
the simulation we have usedd15d350, d252 @26#,
N551, P53, and T50.01. Figure 1~a! depicts the spa-
tiotemporal evolution of array~1!. This figure shows the
gray-scaled values of thex coordinates as a function of the
time t and the spatial coordinatei . The control is switched on
at t532, as denoted by a dash-dotted line in Fig. 1~b!. Figure
1~b! shows the control error and the synchronization error

ec~ t !5iui~ t !2s~ t !i , iP$1, . . . ,N%, ~4!

es~ t !5iui~ t !2uj~ t !i , i , jP$1, . . . ,N%, iÞ j ~5!

as functions of time, whereec(t) is averaged over all cells,
while es(t) is averaged over all pairs of distinct cells. Sinc
both errors approach zero, one can conclude that the con
of the coherent phase in the array is successfully achiev
We have also calculated numerically that ford2.1.15 the
array is asymptotically stable when control is applied. Ther
fore, the theorem provides additional evidence that the co
trol in this case is successful.

In the second numerical experiment,s(t) is a periodic
orbit embedded in the chaotic attractor of a single Lore
oscillator. In other words, the control goal for CODE’s is
coherent periodic phase. The unstable periodic orbit in t
single Lorenz system is recovered using the technique p
posed in Ref.@27#, and its sampled values~with sampling

FIG. 1. Control of spatiotemporal chaos when the control goal
a coherent chaotic phase.d15d350, d252, N551, T50.01, and
P53. The control is switched on att532. ~a! Gray-scaled
x—coordinates of the array~1! as a function of the timet and the
spatial coordinatei . ~b! Control errorec(t) and synchronization
errores(t) vs time.



c
e

-

v
s
3
rly
ase
of
is

s

ent
e

ral
nts
b-
nt
gle
the
the
this
hen
the
the
. It
dy-
y a

n-

m,

i

e

1240 56BRIEF REPORTS
periodT) are stored in a controller@28#. The result is shown
in Fig. 2. The parameter values are the same as in the pre
ous simulation. Therefore, in this case the controlled arra
~1! is also asymptotically stable. However, after the contro
is switched on, the errorsec(t) andes(t) defined by Eqs.~4!
and ~5! start decreasing, but they never approach zero@see
Fig. 2~b!#. This is a numerical artefact already explained in
the discussion following the theorem. The fact that the con
trolled array is asymptotically stable suggests that a fun
tional relation between the control signal and the coordinat
of the array exists. This is similar to the phenomenon o
generalized synchronization@29#.

We turn now to controlling ordered phases~or patterns! in
CODE’s. In this case the control goal is the following pat
tern: 00111100011110011100, where zeros and ones den
groups of five oscillators each, operating in a periodic regim
with two different periodic orbits@30#. In this simulation we

FIG. 2. Control of spatiotemporal chaos when the control goal
a coherent periodic phase.d15d350, d252,N551,T50.01, and
P53. The control is switched on att532. ~a! Gray-scaled
x—coordinates of the array~1! as a function of the timet and the
spatial coordinatei . ~b! Control errorec(t) and synchronization
errores(t) vs time.
a
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used156,d25d350,N5100,P51, andT50.01. The evo-
lution of the uncontrolled array is chaotic with Lyapuno
dimension equal toDL569.3. The other parameter value
are as above. The results are shown in Fig. 3. Figure~a!
shows the spatiotemporal evolution of the array. It is clea
visible that after the control is switched on, the ordered ph
~pattern! is achieved almost immediately. The dependence
the control and the synchronization errors on the time
similar to that in Fig. 2~b!, and is not shown here. In thi
case, these errors do not tend to zero~i! due to the coupling
between the adjacent cells which are controlled by differ
periodic orbits, and~ii ! due to the effect we described in th
discussion after the theorem.

How general is the method for controlling spatiotempo
chaos in CODE’s? We performed numerical experime
with different arrays of coupled cells. In all cases we o
served similar results: it is possible to control cohere
and/or ordered phases in CODE’s via manipulating sin
variables of spatially separated elements and/or cells of
array at discrete times only. A more detailed analysis of
above results will be presented in an extended version of
work. We stress here that the method can also be used w
the underlying dynamics is not known. This is based on
fact that the method can be viewed as a way to control
current state of the system with its prerecorded history
does not require any analytical knowledge of the system
namics, and can be simply implemented in experiments b
purely analog technique.

This work was supported by a binational Germa
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Forschungsgemeinschaft~Grant No. PA 643/1-1!. P.J. ac-
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FIG. 3. Gray-scaledx—coordinates of the array~1! as a func-
tion of the timet and the spatial coordinatei . d25d350, d156,
N5100, T50.01, andP51. The control goal is a pattern. Th
control is switched on att532.
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